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Purpose: Spectral computed tomography (CT) material decomposition algorithms require accurate
physics-based models or empirically derived models. This study investigates a machine learning
algorithm and transfer learning techniques for Spectral CT imaging of K-edge contrast agents using
simulated and experimental measurements.
Methods: A feed forward multilayer perceptron was implemented and trained on data acquired using
a step wedge phantom containing acrylic, aluminum, and gadolinium materials. The neural network
estimator was evaluated by scanning a rod phantom with varying dilutions of gadolinium oxide
nanoparticles and by scanning a rat leg specimen with injected nanoparticles on a bench-top photon-
counting computed tomography system. The algorithm decomposed each spectral projection mea-
surement into path lengths of acrylic and aluminum and mass lengths of gadolinium. Each basis
material sinogram was reconstructed into basis material images using filtered backprojection.
Machine learning techniques of data standardization, transfer learning from aggregated pixel data,
and transfer learning from simulations were investigated to improve image quality. The algorithm
was compared to a previously published empirical method based on a linear approximation and cali-
bration error look-up tables.
Results: The combined transfer learning techniques did not improve quantification in the rod phan-
tom and provided only a small qualitative improvement in ring artifacts. Transfer learning from
aggregated pixel data and from simulations improved the qualitative image quality of the rat speci-
men, for which the calibration data were limited. Transfer learning from aggregated pixel data
and simulations estimated 3.26, 6.26, and 12.45 mg/mL Gd concentrations compared to true 2.72,
5.44, and 10.88 mg/mL concentrations in the rod phantom. Additionally, the neural networks were
able to separate the soft tissue, bone, and gadolinium nanoparticles of the ex vivo rat leg specimen
into the different basis images.
Conclusions: The results demonstrate that empirical K-edge imaging from calibration measurements
using machine learning and transfer learning is possible without explicit models of material attenua-
tions, incident spectra, or the detector response. © 2019 American Association of Physicists in Medi-
cine [https://doi.org/10.1002/mp.13946]
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1. INTRODUCTION

Artificial intelligence and machine learning methods have
been growing at a rapid pace in many industries, especially in
the medical imaging field. Several medical imaging fields of
study have had machine learning methods applied to them
including computer-aided diagnosis, reconstruction, image
denoising, preprocessing, among others.1–4 The broad
deployment of machine learning techniques in medical imag-
ing has given researchers a new perspective on solving the
complicated problems in the field.

Energy-resolved photon-counting detectors enable spectral
computed tomography (CT) and continue to show promising
developments.5 Several research prototypes have been devel-
oped, and studies comparing photon-counting CT scanners to
those with conventional energy integrating detectors have
been performed.6,7 As the sensor and electronic technologies
continue to advance, the clinical advantages of photon-

counting CT, such as lower dose and increased contrast and
material separability, may surpass that of scanners with con-
ventional detectors.

An important application of energy-resolved photon-
counting x ray or CT acquisition is material decomposition,
that is, the ability to estimate the amount of certain materials
that the x rays traveled through before being detected.8 This
is possible due to the multiple spectral measurements
acquired simultaneously by the detector. In contrast, conven-
tional detectors measure the integrated energies of the inci-
dent spectra creating the possibility for different materials
and thicknesses to have the same measured value. Spectral
CTwith conventional detectors can be performed with multi-
ple spectral measurements by repeated acquisitions, modifi-
cations to the x-ray source and generator, modifications to the
detector, or some combination thereof. Photon-counting
detectors can benefit spectral CT applications by simultane-
ously acquiring more than two spectral measurements with
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potentially higher signal-to-noise ratio compared to conven-
tional detectors due to improved detection efficiency.9

K-edge imaging, or the detection and quantification of
contrast agents with heavy elements, is made possible with
photon-counting detectors due to their ability to acquire more
than two spectral measurements and the ability to tune the
energy bin content. Nanoparticles with gold, iodine, or
gadolinium have been investigated for tumor detection,10,11

cardiovascular imaging,12,13 and theranostic applications.14

Material decomposition from photon-counting CT data
can be performed from either the acquired spectral projection
measurements or from the reconstructed spectral images.15,16

Decomposition from the projection measurements has the
benefit of compensating for beam hardening effects. If the
measurement model and statistics are known, projection-do-
main decomposition can be performed using an optimization-
based algorithm, such as maximum likelihood.17 However, it
is difficult to accurately model the detector response and
pulse pileup effects, especially with pixel variations associ-
ated with the semiconductor crystal heterogeneity and
electronics.

Empirical material decomposition methods utilize actual
system measurements that tune model parameters for
improved estimation.18–21 These methods require a model of
the relationship between the basis material path lengths and
the spectral measurements and also require calibration mea-
surements to estimate the model parameters. It can be difficult
for a parametric model to accurately represent the complex
photon-counting measurement process, therefore additional
correction steps have been proposed.19 Practically, the number
of measurements for empirical calibrations should be mini-
mal. Feed forward neural networks are a highly parameterized
model that can approximate any continuous function.22 Our
previous work developed a neural network estimator for
two-material decomposition from photon-counting CT data.18

The method provided accurate decomposition values, but
resulted in prominent ring artifacts due to each detector
channel having an independently trained neural network with
varying bias for different basis material path lengths.

Three-material decomposition that includes a K-edge basis
material poses additional challenges compared to two-mate-
rial decomposition. Adding a third basis function increases
the instability of the estimation problem, increasing the sus-
ceptibility to noise and inaccuracies in the decomposed val-
ues. Also, the signal from the K-edge signature of the
contrast agent is small, due to low concentrations of the con-
trast material. In addition, three-material decomposition theo-
retically increases the number of required calibration
measurements, which could pose practical challenges for
empirical material decomposition. Our previous study of neu-
ral network material decomposition did not investigate this
more challenging case of three-material decomposition.

In this study, we used machine learning techniques such
as data standardization and transfer learning to develop a neu-
ral network that can perform three-material, K-edge imaging
from photon-counting data. The network was evaluated
experimentally on a bench-top photon-counting CT scanner

using a rod phantom containing varying dilutions of gadolin-
ium oxide nanoparticles and a rat leg specimen with a
nanoparticle gel injection.

2. MATERIALS AND METHODS

2.A. Theory

A photon-counting measurement consists of a set of pho-
ton counts nk in each energy bin, k, along a ray path, l, that
terminates on a detector element. When neglecting the effect
of pileup, the photon-counting measurement model can be
represented as,

nk;l ¼ nk;0

Z
SðEÞ

Z Ukþ1

Uk

RðE;UÞdU
� �

exp �
Z
l
lðE; r~Þdl

� �
dE

(1)

where nk;0 is the number of photons in the kth energy bin for
an air scan, lðE; r~Þ are the spatially and energy varying linear
attenuation coefficients of the object being scanned, R(E,U) is
the probability that a photon of energy E is measured at
energy U, ½Uk, Ukþ1Þ are the thresholds that define the kth

energy bin window, S(E) is the energy distribution of the
source spectrum, and nk;l is the number of photons detected in
the energy bin window along the ray l through the object.

The detector deviates from its ideal behavior at both the
sensor and electronic level. The detector response, R(E,U),
incorporates different semiconductor and electronic effects
such as finite energy resolution, charge trapping, fluores-
cence, K-edge absorption, etc.

A line integral through an object,
R
l lðE; r~Þdl, can be

approximated as the unique path lengths of some basis mate-
rials.8 Suppose the line integral through an object contains a
contrast agent, such as gadolinium, which has a unique K-ab-
sorption edge, as shown in Fig. 1. When Compton scatter,
photoelectric absorption, and the K-absorption edge con-
tribute to the attenuation, the approximation contains three
basis functions,Z

l
lðE; r~Þdl � f1ðEÞx1 þ f2ðEÞx2 þ f3ðEÞx3: (2)

Projection-domain decomposition is the process of esti-
mating the basis function coefficients, x~ ¼ ½x1; x2; x3�, from
each spectral measurement, nk;l. When all spectral CT mea-
surements are decomposed, the result is three basis sino-
grams. In this work, we assume f1 and f2 are the linear
attenuation coefficients of two basis materials without K-
edges in the scanned energy range, for example acrylic and
aluminum. We assume f3 is the mass attenuation coefficient
of the contrast agent element with the K-edge signature, such
as gadolinium. By assuming linear attenuation coefficients
for the first two basis materials and mass attenuation coeffi-
cient for the K-edge material, the estimated basis material
components are x~ ¼ ½x1; x2; q3x3�, where x1 and x2 represent
the pathlength through the two basis materials, and q3x3 is
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the mass length of the K-edge contrast agent. Because we
expect the density of the K-edge contrast agent to vary, we
must use the mass length to estimate the K-edge material.
The mass length sinogram is reconstructed into a basis image
in units of density (concentration). The other basis sinograms
are reconstructed into unitless basis images representing the
contribution of each material in each voxel. The process of
estimating an image representing the density of a K-edge
material (e.g., gadolinium) in each image pixel (or voxel) is
referred to as K-edge imaging.

Material decomposition can be considered a transforma-
tion from a measurement space, n~2 N , to a basis material
space, x~2 R, and is an inverse problem. In this work, we use
a neural network for K-edge material decomposition, specifi-
cally, a feed forward fully connected shallow multilayer per-
ceptron. The neural network is trained to learn the inverse
transformation between the spectral measurements, n~, and
basis material components, x~.

2.B. Counts data preprocessing

There is an exponential relationship between the basis
material components to be estimated, x~, and the photon
counts measurements, nk . Rather than have the neural net-
work learn this exponential relationship, log-normalization
with an air measurement is performed on each energy bin
measurement, similar to conventional detector processing.
Therefore,

pk ¼ �ln
nk
nk;0

¼ ln nk;0
� �� ln nkð Þ (3)

where pk are the components of the vector p~, which is the
log-transformed measurement, and nk;0 is the number of pho-
tons counted by bin k for a measurement through air.

2.C. Training data standardization

The neural network undergoes a supervised training pro-
cess whereby known spectral measurements, p~i, resulting
from known basis parameters, x~i, are used as the network
inputs and targets, respectively. Training is an iterative pro-
cess that starts by evaluating each spectral input using the ini-
tial network weights and compares the network prediction to
the specified target. The error is calculated between the net-
work prediction and the specified target value and is used to
update the network weights, thereby creating a network that
will produce a smaller error in a future prediction. This itera-
tive process continues through the input/target pairs of the
training data until convergence criteria are satisfied. The neu-
ral network training process should consider errors in each
component of the output as being equally undesirable. Data
standardization by mean removal and variance scaling
achieves this goal.

The outputs of the neural network estimator are basis
material parameters, x~, which consist of the path lengths of
aluminum and acrylic and the mass length of gadolinium.
Depending on the data used for training, the range of the
magnitude of each component is likely to be different. For
example, this study measures training data from acrylic up to
10.16 cm, aluminum up to 2.54 cm, and gadolinium mass
length up to 79 mg/cm2. When the magnitudes of the compo-
nents are different, the larger basis parameters will dominate
the cost function during training, and the network will prefer-
entially favor accuracy of that basis parameter. Therefore, the
mean is subtracted and the variance of the training data is
scaled to unity for training. The network estimates are then
scaled back to their original range for predictions after train-
ing. This is effective in giving equal treatment to all basis
materials during training.

2.D. Network architecture and parameter selection

Neural networks have several hyperparameters which must
be chosen as part of the design. These hyperparameters can
include the optimization algorithm, the number of hidden
processing elements, the number of hidden layers, etc. A fully
connected network with a single hidden layer was chosen
because it has previously shown promising results in material
decomposition18,23 and the universal approximation theo-
rem22 suggests this neural network model may be sufficient
for the material decomposition problem. The network archi-
tecture is illustrated in Fig. 2. The inputs to the network are
the log-normalized energy bin measurements, pk , and the out-
puts are the estimated scaled basis material components,
x~scaled. The neural network outputs, x~scaled, are scaled back to
their original ranges to produce the final estimate of the basis
material components, x~.

The Broyden–Fletcher–Goldfarb–Shanno (BFGS) algo-
rithm24 was chosen for training because it is more suited for
smaller datasets and the training dataset used in this study
was relatively small, see Section 2.F.2. A leave-one-out
cross-validation method24 determined that 100 hidden

FIG. 1. Mass attenuation coefficients of the basis materials used in this
study: gadolinium, aluminum, and acrylic. The discontinuity above 50 keV
in the gadolinium attenuation is the K-absorption edge and is a unique char-
acteristic of gadolinium. [Color figure can be viewed at wileyonlinelibrary.c
om]
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processing elements and L2 regularization penalty of 0.001
provided good accuracy without overfitting effects in the vali-
dation data.

The cost function that is minimized during training is non-
convex and multimodal. The training algorithm does not
guarantee global convergence and is sensitive to the initial
network weights. Using the same training data, a neural net-
work may perform differently with different random initial
weights.

2.E. Transfer learning

Neural network material decomposition previously
demonstrated sensitivity to ring artifacts due to variations
across photon-counting detector pixels.18 Another practical
challenge of applying neural network material decomposition
to K-edge imaging is the need for additional calibration mea-
surements containing the K-edge basis material. There is a
trade-off between the number of calibration measurements
and the acquisition time and complexity of the calibration
phantom. This study investigates whether two machine learn-
ing transfer learning techniques can overcome these chal-
lenges of neural network K-edge material decomposition.

Transfer learning is a machine learning technique in which
a neural network is pre-trained on a different set of data prior
to training on the intended dataset. Therefore, the initial net-
work parameters are the result of a previous training rather
than random values. Transfer learning can reduce the training
time, can accommodate fewer and noisier training data, and
can result in more consistent network performances. Two
types of transfer learning are proposed in this study: transfer
learning from aggregated pixel data and transfer learning
from a simulated detector.

2.E.1. Transfer learning from aggregated to
individual pixels (M1)

The detector response varies between detector pixels due
to effects such as sensor heterogeneity, pixel variations in
electronic dead time, and nonideal energy bin threshold

calibration. Therefore, each pixel will have a different spec-
tral measurement for the same basis material parameters. For
this reason, a separate neural network should be trained for
each detector pixel. However, variations in the bias of the net-
works across pixels can lead to ring artifacts.

The magnitude of the ring artifacts depend on the differ-
ence between estimates from one pixels network and its
neighbor’s. For example, if all pixels returned the same
biased estimate, the image would be free of ring artifacts but
quantitatively inaccurate. Pixels that have the same magni-
tude of bias but different polarity of bias could introduce ring
artifacts even if the bias was small. Here, we propose a trans-
fer learning method to promote similar biases across pixels
by starting each individual pixels training with a network that
has already been trained to the average pixel response.

More specifically, we investigated a transfer learning
method to overcome the challenges of a small calibration
dataset and pixel to pixel variations. The calibration measure-
ments from all detector pixels were aggregated to train a neu-
ral network from random initial weights. This network learns
the average response of the detector pixels. The learned net-
work parameters are used as the initial weights when training
specific networks using the calibration data for the individual
pixels. This transfer learning promotes neural network mod-
els that are similar in characteristics (i.e., biases) but are fine-
tuned for the given pixel’s unique detector response inferred
from the calibration data. We refer to this approach of transfer
learning from the aggregated pixel data to individual pixel
data as method M1.

The method of transfer learning from the aggregated pixel
data to individual pixel data is compared to a baseline
approach (referred to as Baseline) which consists of training
a neural network for each pixel from random initial weights
using only the calibration measurements measured by the
pixel.

2.E.2. Transfer learning from simulations (M2)

The additional dimension representing the K-edge mate-
rial requires more calibration measurements, increasing the

FIG. 2. Feed forward neural network architecture with four energy bin inputs from a single spectral measurement, three scaled basis material outputs, and one
hidden layer. The network outputs are scaled back based on scaling parameters determined from the training dataset. The network used in this study had 100 pro-
cessing elements in the hidden layer (the illustration only shows four).
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acquisition time and complexity of the calibration phantom.
Depending on the calibration phantom used, the number of
unique basis material combinations sampled may be limited.
Transfer learning from simulated data is proposed to enable
good network performance from a relatively small experi-
mental training data size. A simple detector response, illus-
trated in Fig. 3 was simulated and used in Eq. (1) to generate
many simulated measurements from known basis material
parameters. The detector response model is similar to those
in other studies.4,17 The detector response consists of the flu-
orescence escape and capture peaks of cadmium and
tellurium, an energy resolution of 3 keV full-width at half-
maximum (FWHM) for all incident energies, and a constant
background to model charge sharing and cross-talk effects.
Using simulations, a large training dataset can be generated
to more extensively sample the three-material decomposition
space compared to the experimental training dataset. How-
ever, the simulated detector response is only an approximate
model for the detector, and does not include pixel-to-pixel
variations or pulse-pileup effects. The simulated model does
not accurately represent the experimental detector but has
similar characteristics. Therefore, we propose an initial train-
ing step to learn the approximate model from a large set of
simulated calibration data, followed by additional training
from the limited experimental calibration measurements.

More specifically, a network is first trained using the sim-
ulated data only. Then transfer learning is used to update the
network through additional training using the experimental
calibration measurements from the aggregation of all pixel
data, which transfers the network from the simulated detector
response to the average experimental detector response. Dur-
ing this additional training, the network learns the differences
between the simulated and an actual detector. Finally, the net-
work is customized for each detector pixel by additional train-
ing using only that pixel’s calibration measurements (method
M1), to accommodate the additional variations across pixels.
We refer to this approach of combining transfer learning from
simulations and from the aggregated pixel data to the individ-
ual pixel data as method M2.

2.F. Experimental study

2.F.1. Photon-counting CT system

The bench-top energy-resolved CT system consists of a
microfocus x-ray tube (L9181-02, Hamamatsu), and a CdTe
photon-counting detector (DxRay Inc., Northridge CA) with
1 mm detector elements in a 4 9 64 array located approxi-
mately 73 cm from the source. The detector has four pro-
grammable energy bin thresholds, which were placed at 25,
51, 57, 65 keV. The x-ray source was operated at a tube volt-
age of 90 kVp. Every CT projection or x-ray calibration
transmission measurement was acquired at a tube setting of
0.6 mAs with a count rate of approximately 140 kcps/mm2

through air. CT acquisitions were performed by acquiring 120
view angles over 360�. Data from the fourth row of the detec-
tor were used in this study, though all rows yielded similar
results.

2.F.2. Step wedge phantom

The network must be trained from data acquired using
known basis material components that cover the extent of com-
ponents that will be encountered within the scanned objects.
For this study, the non-K-edge basis materials (l1 and l2) were
chosen to be aluminum and acrylic because they are readily
available, easy to machine, and their effective atomic numbers
and electron densities are significantly different.

Training data were obtained by acquiring energy bin trans-
mission measurements through a step wedge phantom that
consisted of 25 combinations of aluminum (0–2.54 cm in
steps of 0.635 cm) and acrylic (0–10.16 cm in steps of
2.54 cm).

Each of the 25 steps was imaged with and without a 0.1-
mm thick gadolinium foil in the x-ray beam path, for a total
of 50 combinations of basis material parameters. An illustra-
tion of the step wedge phantom with the gadolinium foil is
shown in Fig. 4. The training data did not have repeated mea-
surements in order to reduce calibration time.

2.F.3. Synthesis of Gd2O3:Nd Nanoparticles

A modified protocol based on prior literature was
employed to synthesize Gd2O3 nanoparticles doped with 1%
Nd nanoparticles for NIR emission25,26: 1 mL gadolinium
(III) nitrate hexahydrate (1 M) containing 1% of neodymium
(III) nitrate hexahydrate and 10 g polyvinylpyrrolidone
(MW = 2000) was dissolved in 2 L water, heated at 80�C for
30 min, and then urea (200 mm) was added. The reaction
was continued for 1 h via further heating and then the reac-
tion mixture was allowed to cool to room temperature. Parti-
cles were collected by centrifugation and then allowed to dry
at room temperature. Resulting particles were then annealed
at 600�C for 1 h.25 Finally, Gd2O3 nanoparticles (300 mg)
were ground using an agate mortar pestle and dispersed by
sonication in 100 mL of NaOH (5 mm) solution for 10 min
followed by neutralization with HCl. These particles further

FIG. 3. Simulated detector response function, R(E,U) for a few incident ener-
gies. [Color figure can be viewed at wileyonlinelibrary.com]
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diluted tenfold and sonicated for 1 h, followed by centrifuga-
tion at 600 g for 5 min to eliminate the large aggregates. The
suspension was then centrifuged at 3,000 g for 15 min.26 The
size and charge of Gd2O3 nanoparticles were characterized
using Malvern Zetasizer Nano ZS (Malvern Instruments
Ltd.). The hydrodynamic size and zeta potential of the parti-
cles was found to be 144 nm and �42 mV, respectively. NPs
demonstrated strong NIR emission at 1064 nm under
808 nm excitation.

2.F.4. Rod phantom

A rod phantom was used to evaluate the neural network
estimator performance for different densities of Gd2O3

nanoparticles. The phantom consisted of a 6.35 cm diameter
acrylic body and four, 1.9 cm diameter rods of different mate-
rials. One rod consisted of Teflon, with the other three rods
consisting of 3.125, 6.25, and 12.5 mg/mL dilutions of
Gd2O3 in glass vials. Figure 5 illustrates the rod phantom
components. The rod phantom was placed 47 cm from the
source. During CT acquisition, the detector was translated to
two positions for each view to image the full phantom extent.

2.F.5. Ex vivo tumor model

An ex vivo bone-adjacent tumor mimicking phantom was
generated from an excised hind limb from a Wistar rat. The
tumor-like scaffold on the rat leg adjacent to femur was pre-
pared by composite hydrogels (alginate and gelatin). The
alginate solution (8%, w/v) and gelatin solution (6%, w/v)
were dissolved in phosphate-buffered saline. The final homo-
geneous composite hydrogel was prepared by mixing the
hydrogels in final concentration of alginate solution (7%, w/
v) and gelatin solution (3%, w/v) with 0.1 mL of Gd2O3:Nd
nanoparticles. This mixture was then loaded into a sterilized
syringe with 18-gauge needle and injected in the rat leg. After
injection, the scaffold was allowed to settle for 10 min and
then used for further imaging experiments.

2.F.6. Data processing and analysis

For all CT acquisitions, the count sinograms were log-nor-
malized (Section 2.B) and decomposed ray-by-ray using the
decomposition methods specified in (Table I). After estima-
tion by the neural networks, the basis material sinograms
were reconstructed into basis material images using a filtered
backprojection algorithm.

To evaluate the performance of the proposed method,
regions of interest (ROIs) were placed within the three
nanoparticle rods in the gadolinium image and the Teflon
rod. The sample means of the nanoparticle rods were com-
pared to the nominal gadolinium density which is approxi-
mately 87% of the gadolinium oxide density. The ROI placed
within the Teflon rod in each of the three basis images was
compared to the ground truth acrylic, aluminum, and gadolin-
ium contributions obtained from a least squares fitting of
their linear attenuation coefficients provided by the NIST
database.27 The ROI sample means (n = 498) between differ-
ent neural network methods were compared using two-sam-
ple t-tests with a level of significance of 5%. The null
hypothesis tested was the equivalence of population means.

The simulated training dataset consisted of 8000 combina-
tions of aluminum (0–2.54 cm in steps of 0.134 cm) and

FIG. 4. An illustration of the step wedge phantom consisting of aluminum (white) and acrylic (black) path length variations at each step and the gadolinium foil
(red) in the beam path. The step wedge phantom is translated so the beam path goes through each step incrementally. [Color figure can be viewed at wileyonline
library.com]

FIG. 5. An illustration of the rod phantom imaged in this study. The rod
phantom consists of a 6.35-cm diameter acrylic body with a 1.9-cm Teflon
rod insert and 3 glass vials containing low, medium, and high densities of
gadolinium oxide nanoparticles of 2.72, 5.44, and 10.88 mg/mL Gd,
respectively. [Color figure can be viewed at wileyonlinelibrary.com]
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acrylic (0–10.16 cm in steps of 0.535 cm) and gadolinium
mass lengths (0 g/cm2 to 79 mg/cm2 in steps of
4.16 mg/cm2).

The approaches in this study were then compared to
another empirical decomposition algorithm, the A-table
method, proposed by Alvarez.19 The method assumes a linear
approximation between basis material parameters and spec-
tral measurements. The errors in the linear approximation
using the calibration data are stored in multidimensional
look-up tables and interpolation of the errors is subtracted
from the linearly approximated basis material parameters to
compute the final estimates.

3. RESULTS

Figure 6 displays the reconstructed aluminum, acrylic, and
gadolinium rod phantom basis material images from the
decomposition methods described in Table I. The Baseline,
M1, and M2 methods produced similar qualitative images of
the rod phantom. Method M1 did not reduce the ring artifact
as expected. The SimOnly method (fourth row) incorrectly
distributed the glass vials and Teflon across the basis material
images, demonstrating the approximate nature of the simula-
tion model.

The gadolinium rod estimates in the Baseline and M2
methods were similar, with no significant difference in their
means (low density: P = 0.589; medium density: P = 0.342;
high density: P = 0.123). However, there were differences in
the accuracy of the Teflon rod decomposition between the
Baseline and M2 methods. The Baseline method was more
accurate in estimating the contribution of acrylic (P < 0.05)
but the M2 method was more accurate in estimating the alu-
minum (P < 0.05) and gadolinium (P < 0.05) contributions.

Similarly, the ROI sample means were compared between
the transfer learning from simulations (M2) and the Atable
method. Although the Atable method has more image arti-
facts, the ROI sample means were significantly lower and

closer to the ground truth than the transfer learning method
for all concentration nanoparticle rods (P < 0.05). The sam-
ple means of the Teflon rod for the M2 method were signifi-
cantly closer to the ground truth in the acrylic and aluminum
images compared to the Atable method (P < 0.05). However,
the sample mean of the Teflon rod for the Atable method in
the gadolinium image was significantly closer to the ground
truth compared to method M2 (P < 0.05). The ROI sample
means and standard deviations of the compared methods can
be seen in Fig. 7.

The acrylic, aluminum, and gadolinium basis images of
the rat leg specimen are displayed in Fig. 8. The enhanced
region in the gadolinium image of the neural network method
represents the injected Gd2O3 gel. Transfer learning from
combined pixel data (M1) reduced the ring artifacts in the rat
leg images compared to the Baseline method. Transfer learn-
ing from simulations (M2) further reduced the ring artifacts
at the center of the image and in the gadolinium basis image
compared to method M1. The Atable method did not depict
bone contribution in the aluminum image or nanoparticle
contribution in the gadolinium image, demonstrating material
decomposition error.

A photon-counting image, which is the image recon-
structed from the sum of all detected counts, is compared to
virtual monoenergetic images (VMI) synthesized at 50 keV
for the neural network and Atable methods and is illustrated
in Fig. 9. The transfer learning methods appear to remove the
ring artifacts in the rat monoenergetic image. The SimOnly
method is able to depict the rat anatomy in the VMI despite
the material decomposition errors in Fig. 8. Due to the mate-
rial decomposition errors shown in Fig. 8, the Atable VMI
has a dark area of hypo-attenuation in the region where the
nanoparticle gel is located. The photon-counting image is not
a monoenergetic image and is therefore expected to have a
different contrast level compared to the VMIs. It is included
as a reference for the expected cross sectional anatomy of the
rat leg specimen.

4. DISCUSSION

The ability to detect Gd2O3:Nd nanoparticles via spec-
tral CT will have a direct impact on interventional radiol-
ogy (IR)-based procedures for tumor treatment with
theranostic nanoparticles which include multiple contrasts
such as NIR luminescence and T1-weighted MR imaging
provided by rare-earth-doped Gd2O3.

28 NIR and MR imag-
ing can be utilized for therapy planning and optimization
studies on small animals, while the CT contrast can be
included in standard IR workflows for image guided ther-
mal ablation procedures by clearly visualizing Gd-contrast
accumulating lesions during IR procedures. Further exten-
sion of the proposed methods in identifying other elements
such as Au, will enable clinical translation of emerging
therapies such as image guided plasmonic photothermal
ablation.28–30

This study proposed two transfer learning techniques to
address the challenges of pixel variations in photon-counting

TABLE I. A summary of the compared methods and their abbreviated names.

Abbreviation Summary

Baseline Train individual neural networks for each pixel using
calibration data from each pixel

M1 Train a network using the calibration data aggregated from
all pixels and use transfer learning from the single network to
train individual networks for each pixel using calibration data
from each pixel.

M2 First train a network from simulated data only. Then use
transfer learning to further train a network from the
aggregated pixel data and finally to the individual pixel using
method M1.

SimOnly Train a single neural network using calibration data from a
simulated detector.

Atable A linear model approximating the basis material parameters
and the spectral measurements. The basis material parameter
estimates are corrected by interpolating error look-up tables
created from the calibration measurements.19
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FIG. 6. Reconstructed basis material images of the rod phantom using the various decomposition methods described in Table I.

FIG. 7. A comparison of the ROI sample means from the various decomposition methods described in Table I. The dotted line represents the ground truth values.
The error bars represent one sample standard deviation. [Color figure can be viewed at wileyonlinelibrary.com]
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detectors and the challenges of acquiring large training data-
sets in practice. Transfer learning from the aggregated pixel
data effectively reduced ring artifacts in the rat leg specimen
images but not rod phantom images (Figs. 6 and 8). The rat
leg specimen, with an approximate diameter of 1 cm, con-
tains a small range of basis material path lengths compared to

the larger extent of the calibration step wedge phantom.
Transfer learning from simulations provided more training
data at the smaller path lengths relevant to the rat leg speci-
men, which likely caused the improved gadolinium identifi-
cation in Fig. 8. The rat leg specimen results suggest that
transfer learning from simulations and from aggregated pixel

FIG. 8. Reconstructed basis material images of the rat leg specimen using the various decomposition methods described in Table I. The nanoparticle injection is
visible in the gadolinium basis image as the area of hyperattenuation.

FIG. 9. A photon-counting image of the rat leg specimen compared with synthesized virtual monochromatic images of the rat leg specimen at an energy of
50 keV using the various decomposition methods described in Table I. (WL/WW 500/3000 HU)
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data can be a beneficial supplement to an experimental train-
ing dataset for objects for which relevant calibration data is
limited.

The Atable had statistically lower and closer sample ROI
means to the ground truth concentration in the nanoparticle
rods than the neural network method M2. The Teflon rod was
less accurately decomposed into the acrylic, aluminum, and
gadolinium images compared to the neural network methods.
The Atable method had noticeable artifacts in the rod phan-
tom and was unable to separate the bone and gadolinium in
the rat phantom. The Atable method is most accurate when
the basis material parameters are close to the ones in the cali-
bration data. The rat specimen results suggest that the Atable
method has limitations in generalizing away from the calibra-
tion points, while the neural networks have the benefit of
improved generalization when experimental calibration data
are limited.

Quantitative photon-counting K-edge imaging was previ-
ously demonstrated using a projection-domain maximum
likelihood algorithm and a detector response model devel-
oped from synchrotron measurements.17 This previous
study imaged higher concentrations of gadolinium
(11–40 mg/mL) compared to the current study and demon-
strated errors of around 9 mg/mL. In contrast, the neural
network methods developed in this study used a set of 50
calibration transmission measurements and was able to esti-
mate gadolinium concentrations as low as 3 mg/mL with
errors <1 mg/mL. One benefit of the neural network
approach, compared to maximum likelihood or other opti-
mization-based material decomposition algorithms, is that
the decomposition requires a small number of arithmetic
operations.

One limitation of this study is that calibration data was
only acquired at one noise realization, which occurred
because of practical limitations with this specific experi-
mental bench-top system. The quantitative accuracy and
ring artifacts may be further improved with more calibra-
tion datasets. The improvement provided by transfer learn-
ing may be reduced as more calibration data is acquired.
There may be cases in practice where calibration time is
limited. The results of this study demonstrate accurate K-
edge material decomposition despite the limited calibration
dataset.

The gadolinium oxide nanoparticles in the rod phantom
were diluted from a 50 mg/mL solute with distilled water.
The nominal densities were shown in Fig. 5 but there is some
uncertainty in the dilution process. In addition, the nanoparti-
cles may have settled in the glass vials during the imaging
process, causing inhomogeneities within the vials. For these
reasons, there is some uncertainty in the ground truth concen-
trations of the rod phantom nanoparticles, which may con-
tribute to the bias in the ROI estimates.

Scattered radiation can affect material decomposition but
was neglected in this study. The imaging system did not uti-
lize a post-object antiscatter grid. A pre-object lead slit colli-
mator was used to collimate the beam in the cone direction
only, effectively illuminating only the four rows of the

detector. The fan angle was not collimated. However, scatter
in the fan direction is believed to be small because of the
small extent of the imaged objects.

This study did not use a bowtie filter in the imaging
system. However, the methods presented in this paper
should be effective in the presence of a bowtie filter
because each pixel is trained individually using calibration
measurements.

The measured spectrum for a given detector element is a
result of the spectra incident on that detector element and its
neighbors.31 However, the neural network developed in this
study estimates the basis material components for each ray
independently. Furthermore, the neural network was trained
from step wedge data where all detector elements imaged the
same object simultaneously resulting in a similar number of
counts detected in all pixels. When acquiring data of an arbi-
trary object, neighboring pixels at an object boundary will be
exposed to different numbers of photons, changing the
amount of charge sharing between the two pixels. In the
future, a more robust neural network estimator could be
developed to compensate for charge sharing effects by con-
sidering the measurements of the detector element of interest
as well as its neighbors.

The neural network was both trained on step wedge data
and evaluated with phantom and rat specimen data
acquired using the same scanning parameters (tube voltage,
tube current, integration time, etc.). The neural network
model implicitly learns the relationship between the mea-
surements and the basis material parameters. Therefore, the
network is specific to the scanning parameters used in
training and requires retraining for a different set of scan
parameters. An interesting area of future work is to investi-
gate whether a single network model could be generalized
to estimate basis material parameters from many different
scanning parameters provided sufficient data for training.
The ability to have a general neural network decomposition
model for many typical tube output and filter combinations
would be beneficial in a clinical product. Theoretically, an
accurate physics-based model could overcome this limita-
tion, if one could be developed. This limitation is the focus
of future work.

5. CONCLUSIONS

This study investigated neural network methods using
transfer learning for K-edge imaging of gadolinium oxide
nanoparticles. The networks were trained using data acquired
from a step wedge phantom containing path lengths of alu-
minum, acrylic, and gadolinium basis materials. The transfer
learning techniques did not result in significant quantitative
improvement for the rod phantom. Transfer learning from
aggregated pixel data and from simulations improved the
qualitative image quality of the rat specimen, for which repre-
sentative calibration data was limited. The results of rod
phantom and rat specimen experiments demonstrate that
quantitative K-edge imaging using machine learning is possi-
ble with photon-counting x-ray detectors.
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